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Transfer functions
While there are many aspects to consider when determining the performance of 
circuit, two of the most common are:  

1. Switching speed. Obviously, this is important in digital systems where where 
we would like logic circuits to switch as fast as possible. But switches are 
used in all sorts of applications.  We can determine the switching speed of a 
circuit by looking at the step response. 

2. Frequency response. This is essential in understanding how analog circuits 
change as the operating frequency changes. Frequency response is key to 
understanding the use of circuits in communications systems, audio systems, 
and control systems. Designing virtually any analog system will, at some 
level, depend on knowledge of how the circuits perform at different 
frequencies. Frequency response is usually determined by applying a sinusoid 
at the input and measuring the amplitude and phase shift at the output. 

By now, after doing the examples in the previous sets of notes, it should be 
obvious that Laplace methods give us knowledge of both of these aspects of 
circuits. Take a circuit, describe in frequency-domain terms, apply a step source 
and a look at the output to determine switching speed.  Take the same 
frequency-domain description of the circuit, apply an a sinusoid at the input, 
and look the output to determine the amplitude and phase shift.
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Simple RC — switching speed
The simple RC circuit is rather mundane when looking at switching 
speed, but its simplicity makes it a good example to illustrate the idea.
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Simple RC — AC response
The RC circuit also exhibits a specific AC response. To find the response, 
look at the output of the RC circuit when driven by a sinusoidal source. 
From the earlier example:

vi (t) = VA ⋅ cos (ωt)
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During the analysis each of the circuits in various examples, as we 
worked towards finding a specific voltage or current, we reached a 
stage where the quantity of interest was expressed as function 
multiplied by the source voltage (or current), Vi (s).
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–
+
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1
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R
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–
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2

(s + 1
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We could show more examples, and they would reinforce the pattern 
that should be clear — when finding a voltage or current in the 
frequency domain, the result will always be in the form of a function 
that is derived from the circuit, multiplied by the Laplace transform of 
the source.
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The frequency-domain expressions in the previous circuit examples 
could be generalized to a simple form:

V2 (s) = T (s) ⋅ V1 (s)

The quantity relating the “output” to the “input” is known as the transfer 
function. The circuits could all be generalized to a simple block 
diagram:

The transfer function depends only on the arrangement of the components 
in the circuit.  It does not depend on the form of the source. The transfer 
function contains all of the information about the circuit — it determines 
the switching speed of the circuit and it determines the frequency 
response of the circuit.  Those two behaviors are inextricably intertwined 
— if you know one, you can determine the other, although the math to do 
that could be messy. The key point is that everything depends on T(s).

+
–V1 (s)

–

+

V2 (s)T (s)

I1 (s) I2 (s)
There is an obvious 
similarity to two-port 
models studied in EE 201.
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Often, a transfer function is a ratio of an “output” voltage to an “input” 
voltage. 

In working various examples, we have seen that frequency-domain quantities 
can always be expressed as a ratio of two polynomials.

T (s) =
Vo (s)
Vi (s)

In this case, the transfer function is 
dimensionless and looks much like the gain 
that we have used for op amp circuits.

But a transfer function can be a ratio of currents, Io (s)/Ii (s) (also dimensionless), 
a ratio of a voltage to a current, Vo (s)/Ii (s) (units of Ω), or the inverse — a ratio of 
current to voltage, Io (s)/Vi (s) (units of Ω–1 or siemens).

T (s) =
cmsm + cm−1sm−1 + … + c1s + co

dnsn + dn−1sn−1 + … + d1s + do

T (s) = Go ⋅
sm + am−1sm−1 + … + a1s + ao

sn + bn−1sn−1 + … + b1s + bo

As we do more work with transfer functions, we will see that is convenient to 
put them into standard form. In particular, we like to have the leading 
coefficients of the numerator and denominator be equal to 1.  It is easy to 
factor out the leading coefficients and put them into a constant “gain” factor.
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Poles and Zeros
The polynomials in the numerator and denominator can be factored.

The various values of Zm are the zeros of the numerator and hence are the 
zeros of the transfer function, T(s = –Zm) = 0.

The various values of Pn are the zeros of the denominator and are the 
poles of the transfer function, T(s = –Pn) → ∞.

The poles determine the basic behavior of the circuit.  To see this, recall 
the partial fraction expansion of the function.

T (s) = Go ⋅ (s + Zm) (s + Zm−1)…(s + Z1) (s + Zo)
(s + Pn) (s + Pn−1)…(s + P1) (s + Po)

(s + Zm) (s + Zm−1)…(s + Z1) (s + Zo)
(s + Pn) (s + Pn−1)…(s + P1) (s + Po)

=

An

(s + Pn)
+

An−1

(s + Pn−1)
+ … +

A1

(s + P1)
+

Ao

(s + Po)
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Transfer functions from circuits made with passive components — 
resistors, capacitors, and inductors exhibit certain characteristics. 

• At most, the numerator can be one order higher than the 
denominator.  m ≤ n + 1.  Usually, the numerator has lower order 
than the denominator. 

• Complex zeros or poles must come in the form of complex 
conjugates. (All of the coefficients in the polynomials must be real 
numbers.) 

• Poles cannot be located in the right-half plane. ( σ > 0)
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Consider a circuit that has a second 2nd-order transfer function

T (s) =
1

s2 + as + b
=

1

(s + P1) (s + P2)
Drive it with a step function, Vi (s) = Vf /s. In the frequency domain, the 
output will have the form:

Vo (s) = T (s) Vi (s)

=
Vf

s (s2 + as + b)
=

Vf

s (s + P1) (s + P2)

=
V1

s
+

V2

s + P1
+

V3

s + P2

vo (t) = V1 ⋅ u (t) + V2 exp (−P1t) + V3 exp (−P2t)
The complete response will have at least term that comes from the source 
(the step function in this case) and transient terms from the transfer 
function.
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Frequency response
By using a sinusoidal source, we can look at a circuit’s frequency 
response.  Consider again the simple RC divider with an AC source.
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τ + V2 ⋅ cos (ωt − θ)
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−VA

1 + (ωRC)2 V2 =
VA

1 + (ωRC)2
θ = arctan (ωRC)τ =

1
RC

Vi (s) =
VA ⋅ s

s2 + ω2

T (s) =
1

RC

s + 1
RC
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vC (t) = V2 ⋅ cos (ωt − θ) V2 =
VA

1 + (ωRC)2
θ = arctan (ωRC)

Very often, we are interested in how a voltage or current changes when 
the frequency of the sinusoid changes. In those cases, we are usually 
interested in only the sinusoidal part of the response — the transient 
portion is of secondary interest. So the first thing we do is to drop off the 
transient part of the solution and focus on the steady-state response of 
the system.  (Recall sinusoidal steady-state analysis from EE 201.) 

Another view of this approach is to say that we are restricting the 
complex frequency.  By choosing to ignore the transient portion of the 
response, we are, in effect, setting σ = 0, so that s = jω only. 

After dropping the transient term, the steady-state response in the time 
domain is:

If the input voltage is a cosine vi(t) = VA·cos(ωt), then the steady-state output 
is also a cosine, but with a different amplitude and a phase shift. These are 
the key features when looking at frequency response. We know that the 
output will be a sinusoid, but we need to find the amplitude and phase.



EE 230 Transfer functions – 14

Frequency response plots
We can plot the amplitude and phase.  Note: Because frequencies can 
range over several orders of magnitude, we almost always use a 
logarithmic scale for the frequency axis.
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The plots bear out the features of the amplitude and phase functions. 

At low frequencies, ω → 0:

V2 =
VA

1 + (ωRC)2
→ V2 ≈ VA θ = arctan (ωRC) → θ ≈ 0∘

At high frequencies, ωRC >> 1:

V2 =
VA

1 + (ωRC)2
→ V2 ≈

VA

ωRC
θ = arctan (ωRC) → θ ≈ − 90∘

In between, when ωRC = 1:

V2 =
VA

1 + (1)2
→ V2 =

VA

2
θ = arctan (1) → θ = − 45∘

Low frequencies “pass through” — the amplitude of the output is the 
about the same input — and high frequencies are attenuated  — the 
amplitude of the output is decreasing inversely with frequency. We 
might call this a “low-pass” response. (More on this later.)
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At this point, we have a method for finding the frequency response for a 
voltage or current in a circuit. Say that we want to find some the 
frequency response of some particular voltage, vx, in a circuit. 

1. Find the transfer function, T(s) = Vx (s)/Vi (s).  

2. Multiply the transfer function by the Laplace transform of a 
sinusoidal source, Vx (s) = T(s)·Vi (s), where Vi (s) is the transform of a 
sine, cosine, or complex exponential. 

3. Take the inverse transform to find corresponding time-domain 
function Vx (s) → vx(t). 

4. Drop off the transient portion of vx(t).  Of course, the remaining 
steady-state part will be a sinusoidal function of some sort. 

5. Use trigonometry and other math to convert the sinusoids into a 
single cosine term with amplitude and phase. 

6. Use the amplitude and phase expressions to analyze the frequency 
response.  Make a plot if desired. 

But, wow, this whole approach seems clumsy.  Is there more efficient 
method to find the amplitude and phase expressions?
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The answer is “yes”.  In fact, we will be able to do everything in the 
frequency domain — it will not be necessary to transform back. We will 
need to use some complex math, which we are usually willing to do if it 
saves time and effort in other places. The trick is to ignore all of the 
transients at the outset.  To see how it works, suppose that we have a circuit 
characterized by the transfer function T(s).  We want to obtain the 
magnitude and phase of the output when we drive the circuit with a 
sinusoid. To keep it simple, use a complex exponential for the source. 

vi (t) = VA exp (jωt) → Vi (s) =
VA

s − jω

In the frequency domain, the output will be

Vo (s) = T (s)
VA

s − jω

Without knowing the details of T(s), it looks like we are limited in how far 
we can go.  However, we know that if we do a partial fraction expansion, 
the result will have one term involving s – jω along with some number of 
terms involving the poles of T(s), whatever they may be.

Vo (s) = T (s)
VA

s − jω
=

Ao

s − jω
+

A1

s + P1
+

A2

s + P2
+ ⋯
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Vo (s) = T (s)
VA

s − jω
=

Ao

s − jω
+

A1

s + P1
+

A2

s + P2
+ ⋯

All of the terms relating to the poles of T(s) will be transient terms that will 
decay away over some period of time, even the complex conjugate poles.  
None of the terms relating to poles P1, P2, … will contribute to the steady-
state response. The only term that matters for steady-state is the first one. So 
we need to calculate only Ao — the rest of the terms are irrelevant to our 
goal of finding the frequency response. 

Proceeding as we have done with previous partial fraction expansions, we 
multiply both sides of the above equation, but this time we multiply only by 
(s – jω).

T (s) VA = Ao +
A1 (s − jω)

s + P1
+

A2 (s − jω)
s + P2

+ ⋯

And then evaluate at s = jω.  The result is 

Ao = T (jω) VA

The Ao coefficient is a complex number, because T(jω) is a complex.  We 
can express Ao in terms of magnitude and phase.

Ao ejθA = VA T (jω) ejθT
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The steady-state response in the time domain is the inverse transform

Vo (s) =
Ao ejθA

1 − jω
→ vo (t) = Ao exp [j (ωt + θA)]

So by applying a sinusoid with amplitude VA and frequency ω as the driving 
function to the circuit, the steady-state response is a sinusoid at with the 
same frequency and with amplitude of |Ao| = |T(jω)|· VA and a phase shift of 
θA = θT.  The transfer function, when evaluated at s = jω, has all of the 
pertinent information about the steady-state frequency response. 

So the method for finding frequency response simplifies to: 

1. Find the transfer function for the relevant quantity in the circuit. 

2. Extract the magnitude and phase from the transfer function. 

3. (If needed) Multiply the magnitude by the amplitude of the source and 
add the phase of the source to the phase of the transfer function. 

Usually, step 3 is not necessary because the amplitude of the source is just 
a constant and the phase of the source is usually defined to be 0. The 
frequency dependence of the voltage or current is the same as the 
frequency dependance of the transfer function.
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To illustrate the simplicity of the approach, 
analyze the RC divider circuit one more time. 
As we have seen, the transfer function is

T (s) =
1

RC

s + 1
RC

=
ωo

s + ωo

Substitute s = jω:

T (jω) =
1

RC

jω + 1
RC

=
ωo

ωo + jω
(Note that ωo is a constant and ω 
is the frequency variable. 
Sometimes it can be confusing.)

Find the magnitude:

T (jω) =
ωo

ω2
o + ω2

=
1

RC

( 1
RC )

2
+ ω2

=
1

1 + (ωRC)2

Multiply by the amplitude of the source, if desired. Then find the phase:

θT = 0 − arctan ( ω
ωo ) = − arctan (ωRC) The results are identical to the 

previous analysis. We have 
already made the plots.

R

C
–

+
VC (s)Vi (s)

+
–
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Example 1
Find the frequency response for the 
inductor voltage RL circuit shown.

R

L
–

+
VL (s)Vi (s)

+
–

ZL = sL

Once again, this is a simple voltage 
divider:

VL (s) = ( sL
sL + R ) Vi (s)

The transfer function is:

T (s) =
VL (s)
Vi (s)

= ( sL
sL + R ) =

s

s + L
R

=
s

s + ωo
ωo =

R
L

= 104 rad/sec

10 mH

100 Ω

Substitute s = jω:

T (jω) =
jω

ωo + jω
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Magnitude: T (jω) =
ω

ω2
o + ω2

=
ω

( R
L )

2
+ ω2

=
1

1 + ( R
ωL )

2

θT = 90∘ − arctan( ω
ωo ) = 90∘ − arctan ( ωL

R )Phase: 
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This one has a different behavior.  It starts low at low frequencies and the 
magnitude increases as the frequency increases.
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Example 2

–
+

C

R2
R1

Vo (s)
Vi (s)

T (s) = −
1

R1C

s + 1
R2C

Find the frequency response for the 
amplifier circuit shown.

1 kΩ

22 nF

15 kΩ
We have previously calculated the 
transfer function:

Rewriting slightly to emphasize the gain of the amp:

T (s) = (−
R2

R1 )
1

R2C

s + 1
R2C

= Go
ωo

s + ωo

Go = −
R2

R1
= − 15

ωo =
1

R2C
= 3030 rad/sec

Substitute s = jω:

T (jω) = Go
ωo

ωo + jω
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θT = 180∘ − arctan( ω
ωo ) = 180∘ − arctan (ωRC)

T (jω) = Go
ωo

ω2
o + ω2

=
Go

1 + ωR2C
Magnitude: 

Phase: 

The results are very similar to the simple RC divider circuit.  That’s because the 
transfer functions are very similar. With the amp, there is some gain and the 
negative sign introduces an extra 180° of phase, but otherwise the curves are 
the same.
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Example 3
Find the frequency response of the resistor 
voltage in the RLC circuit at right. 

This is similar to the RLC done previously. In 
the earlier example, the voltage was taken 
across the cap. 

It is still a voltage divider.

VR (s) = ( R
1

sC + R + sL )Vi (s)

The transfer function is:

T (s) =
VR (s)
Vi (s)

=
R

1
sC + R + sL

=
s ( R

L )
s2 + s ( R

L ) + 1
LC

R
C

–

+
VR (s)

+
–

L
Vi (s)

Substitute s = jω: (Be careful with the s2 term.)

T (jω) =
jω ( R

L )
−ω2 + jω ( R

L ) + 1
LC

=
j (ω R

L )
( 1

LC − ω2) + j (ω R
L )

ZL = sL

ZC =
1

sC

R = 200 Ω

10 µF

0.1 H
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θT = 90∘ − arctan
ω R

L
1

LC − ω2

T (jω) =
(ω R

L )
( 1

LC − ω2)
2

+ (ω R
L )

2
Magnitude: 

Phase: 

Kinda messy.

Must be careful to adjust phase 
properly when ω2 = 1/LC.
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Middle range frequencies have higher amplitude.  Low and high 
frequencies are attenuated.  This is band-pass.


