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Stability
In a feedback system, an interesting condition can occur, leading to a 
potential problem and also a potential opportunity. 

We have seen numerous examples where the feedback network is 
frequency dependent, and we have just examined the gain-bandwidth 
limit of the open-loop amp.  Both A and β can contribute to the 
frequency dependence of the closed-loop gain.

G (s) =
A (s)

1 + A (s) β (s)

G (jω) =
A (jω)

1 + A (jω) ⋅ β (jω)

+– A

β

vi vo

Focusing on sinusoidal behavior, s = jω:
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It is certainly conceivable that there might be a frequency where 

. 

In that case, the closed-loop gain would tend towards infinity!  The 
closed-loop amplifier would not be stable. 

This is not quite as easy as the condition above implies, since there are 
requirements for both magnitude and phase. 

 and ,  

but the possibility certainly exists.

A (jω) β (jω) = − 1

|Aβ | = 1 θ = 180∘
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The loop gain

The key to understanding stability is 
the loop gain, L(s) = VL(s)/Vi(s).

L (jω) = A (jω) ⋅ β (jω)
When considering issues of stability, we generally are concerned with 
the properties of the amp and usually the feedback circuit will not have 
have frequency dependence — so assume that β is a constant.

L (jω) = β ⋅ A (jω)

L (jω) = β A (jω) exp [jθ (ω)]

The “natural” frequency of amp is low-pass — the operation of the 
transistors degrades as the frequency increases, giving the amp an 
overall low-pass characteristic.  Writing the loop gain in magnitude and 
phase form:

A(s)

β(s)

vi vo

vL
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If, at some frequency, the phase shift is 180°  (denote this frequency as 
ω180), then

L (jω180) = − β A (jω180)
At the frequency ω180, what was intended to negative feedback has 
become positive feedback!  Everything now depends on the magnitude 
at that frequency.  If the magnitude is less than one, the closed loop 
gain will actually become bigger than the open-loop gain.  This a bit 
weird, but it we are OK. 

But if the magnitude happens to be exactly 1 at ω180, then we are in 
trouble.  In the case the loop gain is exactly –1, and the closed-loop 
gain goes to infinity.  This is the definition of an unstable circuit.  An 
infinitely large gain implies that the circuit can have a finite output with 
no input!  

As the signal with frequency ω180 propagates 
around loop, it will sustain itself!  There is 
no input, but the output will be a sinusoid 
at that very specific frequency.  Thus, an 
unstable circuit will oscillate.   

+– A

β

vo=Av1
v1

–v1
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Furthermore, if the circuit has this instability in the loop frequency 
response, it is  guaranteed to oscillate.  Any disturbance in a circuit (a 
bit of noise, a switch closing, etc) will induce a voltage somewhere 
along the path of the circuit.  That disturbance will probably have a 
component at ω = ω180.  That component will be sustained by the 
positive feedback at that frequency.

And having the magnitude be bigger than 1 at ω = ω180 does not help.  
In that case, the circuit will still be unstable, but the oscillations will 
now grow exponentially with time.  The growth will be limited only by 
the power supply limits of amplifier. 

Note that, in order to have the loop gain reach the point where the 
phase = –180°, the transfer function of the amp must third order or 
higher. A first-order low-pass will have a maximum phase shift of –90° 
— it will never become unstable.  A second-order low-pass has 
maximum phase shift of –180°, but this only occurs as ω → ∞, so the 
oscillation frequency would be “extremely high”.  So, in order for an 
amp to become unstable, it’s low-pass response must be third-order or 
higher.  Unless precautions are taken, most have amps will have high-
order transfer functions and stability is a concern.
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Stability — another view
Another way to think about the stability is to consider what can happen 
to a loop gain when the feedback loop is closed.  As an example, 
consider an amp that has a third-order transfer function of 

A (s) =
108

(s + 1) (s + 2 + j2) (s + 2 − j2)
=

108
s3 + 5s2 + 12s + 8

If this is combined with a feedback loop with β = 0.25, then

L (s) = βA (s) =
26

s3 + 5s2 + 12s + 8

There is nothing wrong or unstable with this function.  However, when 
the feedback loop is closed, the resulting function is 

G (s) =
A (s)

1 + A (s) β
=

108
s3 + 5s2 + 12s + 8

1 + 26
s3 + 5s2 + 12s + 8

=
−108

s3 + 5s2 + 12s − 18

The closed-loop function has a different denominator, with different roots!
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Linear oscillators

The feedback network has a very specific frequency dependence, β → β(s).  
With positive feedback, the closed-loop transfer function is

We can turn the idea of trying to make amplifiers stable on its head by 
taking a nominally stable amplifier and adding a feedback circuit that 
will cause the closed-loop system to become unstable.  We use positive 
feedback – a sample of the output feed back and added to the input.

If the frequency-dependence of the feedback circuit relies on an LC 
resonance, it is usually referred to as a “tank circuit”.

++ A

β(s)

vi vo

* (V) =
$

�� $շ (V)
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To create the instability, the denominator of the closed-loop transfer 
function must be zero.

Which is to say that the loop gain, Aβ(s), must be equal to 1.

Another way of describing what is happening is that the poles of the 
transfer function must occur in the right-half plane.  Ideally, the poles 
would be right on the imaginary axis, meaning that the denominator has 
zeros at s = ±jωo. Thus 1 –  Aβ(s) would be of the form s2 + ωo2.

This is known as the Barkhausen criterion.

In practice, it is very difficult to design a circuit that has poles exactly on 
the imaginary axis.  Generally, the circuit is designed to have poles that 
are slightly in the right-half plane.  Then the oscillations will grow 
exponentially with time and some sort of amplitude control will be 
needed to keep the oscillations close to sinusoidal.

�� $շ (V) = �

$շ (V) = �

$շ (M֌) = �HM�
�
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The Wien-bridge circuit.

A simple and popular oscillator circuit is 
based on the Wein bridge.  The circuit is 
essentially a non-inverting amp with a 
frequency-dependent voltage divider 
connecting the output back to the non-
inverting input.

–
+

R1

R2

RP CP

RS CS

vo

v+

While not a requirement, the circuit is 
usually designed with RS = RP and CS = CP.

The loop gain is easily calculated.

=
�

�+ 5V
5S

+
&S
&V

+ V5V&S + �
V5S&V

YR

vo = (1 +
R2

R1 ) v+

v+ =
Zp

Zp + Zs
v+ =

Rp

1 + sRpCp

Rp

1 + sRpCp
+ Rs + 1

sCs
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Combining the two and doing a bit of familiar algebraic re-arrangement, 
we see the the the loop function has the familiar bandpass form.

substituting s = jω,

L (s) = (1 +
R2

R1 ) ⋅
s ( 1

RsCp )
s2 + s ( 1

RsCs
+ 1

RpCp
+ 1

RsCp ) + 1
RsRpCsCp

Often, the circuit is designed with Rs = Rp and Cs = Cp (although this is 
not a requirement).

L (s) = (1 +
R2

R1 ) ⋅
s ( 1

RC )
s2 + s ( 3

RC ) + 1
(RC)2

L (jω) = (1 +
R2

R1 ) ⋅
jω ( 1

RC )
[ 1

(RC)2 − ω2] + jω ( 3
RC )
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Next, the magnitude must be equal to 1 at the oscillation frequency.

With the result that 1 + R2/R1 = 3 or R2 /R1 = 2.

When the feedback loop is closed, the circuit will oscillate at the 
frequency where the phase angle of the loop function is zero.

θ = 90∘ − arctan
3ωosc

RC
1

(RC)2 − ω2
osc

= 0∘

To meet the requirement, the arctangent term must go to 90°, which 
happens when the denominator goes to infinity.

ωosc =
1

RC

L (jωosc) =
1 +

R2

R1

3
= 1

Designing a simple Wien-bridge oscillator is straight-forward — choose 
RC to set the desired frequency and then adjust the gain to start the 
oscillation.
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A PSPICE example.
Use the 741 op amp model in PSPICE. RP = RS = 10 kΩ.  CP = CS = 16 
nF.  The expected oscillation frequency is 1 kHz.

SPICE needs some kind of transient to “kick-start” the oscillation.  Use a 
single short pulse at the input to get things started. Use transient analysis 
to see voltage as a function of time.
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With R2 = 35 kΩ and R1 = 25 kΩ, there is not enough gain to start the 
oscillation.  (1+ R2/R1) = 2.4.
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Increasing the gain to 2.86 (R2 = 39 kΩ and R1 = 21 kΩ, gives a few 
more wiggles, but the gain is still too small to sustain the oscillations.
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With R2 = 40 kΩ and R1 = 20 kΩ, the gain is exactly 3 and the circuit 
oscillates with a clean sine wave.
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With R2 = 41 kΩ and R1 = 19 kΩ, the gain is 3.16 and the oscillations 
grow with time until clipped by the power supply limits.

The poles of the transfer function are now in the right-half plane, 
meaning that this is an unstable exponential growth in the response.
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Increasing the gain even more (R2 = 35 kΩ and R1 = 15 kΩ giving a gain 
of 3.33) causes the oscillations to grow – and clip – even faster.

The poles are even farther into the right-half plane, making the 
exponential growth that much stronger.
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phase-shift oscillator
A phase shift oscillator uses an inverting amp for the gain, which comes 
with its own 180° phase shift.  So the tank circuit must provide another 
180° of phase shift to get back to 0° (360°) to meet the Barkhausen 
criterion.  This requires a 3-pole circuit, since a 2-pole circuit will get to 
180° only at f → ∞.

–
+ vo

RF

R R

C C C
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–
+ vo

RF

R R

C C Cv1

v2
= vo

Calculate the loop gain. (Break 
the loop…)

Vy

sC (V1 − Vx) =
Vx

R
+ sC (Vx − Vy)

sC (Vx − Vy) =
Vy

R
+ sC ⋅ Vy

sC ⋅ Vy =
−Vo

Rf

Vx

Turning the algebra crank, we can come up with the loop function. (You 
should work this out for yourself.)

L (s) =
Vo

V1
=

−s3RfC

3s2 + s ( 4
RC ) + 1

(RC)2
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Switching to AC analysis (s = jω)

The phase expression is 

To make the phase go to zero, the arctan term must be 90°, which 
occurs when the denominator goes to zero.

L (jω) =
+jω3RfC

[ 1
(RC)2 − 3ω2] + j ( 4ω

RC )

θ = 90∘ − arctan
ω3RfC

1
(RC)2 − 3ω2

Note the sign change.

ωosc =
1

3RC

At the oscillation frequency, the magnitude of L must be 1:

L (jωosc) = 1 =
ω3

oscRfC

[ 1
(RC)2 − 3ω2

osc]
2

+ ( 4ωosc

RC )
2

=
Rf

12R
Rf = 12R
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quadrature oscillator
This is an interesting one.  It uses an straight integrator circuit followed 
by a non-inverting amp with a  single-pole tank circuit.  The output of 
each op-amp will oscillate sinusoidally, and the two sinusoids are 90° 
out of phase (i.e. in quadrature).  This can be useful in some 

–
+

–
+

R1 R2

R3

R4

Rf

C

C

vo2

vo1
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–
+

–
+

R1 R2

R3

R4

Rf

C

C

Vo2

Vo1

V2 = Vo2

V1 
Vx

Calculate the loop gain. (Break the loop somewhere…)

From the integrator: Vo1 = −
1

sR1C
V1

At node x: 
Vo1 − Vx

R2
+

Vo2 − Vx

Rf
= sCVx

From the inverting amp: Vo2 = (1 +
R4

R3 ) Vx
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Putting it all together, we can find the loop gain:

Switching to AC analysis (s = jω)

The phase will be zero (Barkhausen criterion) when 

5�5�
5�5I

= �

/ (V) =
9�
9�

= �
�+ 5�

5�

V
�
�� 5�5�

5�5I

�
5�& + V�5�5�&�

/ (M֌) = �
�+ 5�

5�

M֌
�
�� 5�5�

5�5I

�
5�& � ֌�5�5�&�

When the phase is zero, the magnitude is

��/
�� =

�+ 5�
5�

֌�5�5�&�
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The magnitude needs to be 1 (or bigger) at the oscillation frequency.  
There are many ways to choose component values to meet the two 
conditions.  One common and simple combination is:

R2 = R3 = R4 = Rf = 2R1

In that case, the loop gain reduces to:

/ (V) = � �
V�5��&�

/ (M֌) =
�

֌�5��&�

The oscillation will occur when
��/

�� =
�

֌�R5��&�
= �

֌R =
�
5�&

Rf is typically a potentiometer, which 
can be adjusted to bring the circuit to 
the oscillation condition, Adjusting so 
that Rf = 2R1 brings the circuit to the 
onset of oscillation.  Making Rf smaller 
guarantees oscillation, at the cost of 
linearity of the sinusoid. 

Because vo1 is the integral of vo2, it 
will be shifted in phase by 90°.  Also, 
the filtering action of the integrator 
circuit tends to make vo1 more linear 
(i.e. have less distortion) than vo2.


