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Inverse transform — back to the time domain
In the circuit examples of the previous set of notes, we saw the ease of 
analyzing circuits in the frequency domain. One example was the RC 
with a step-voltage source.

=
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RC )
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Once we obtained the frequency-domain result, then what?  Obviously, 
we need to go in reverse and transform back the time domain. 

However, we will state once again that transforming back to the time is 
not always a necessity. Often, the frequency-domain expression gives us 
important information about the circuit’s behavior.
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There is a rigorous method for going back to the time domain. The 
inverse Laplace transform has the form:

vC (t) = ℒ−1 {VC (s)} =
1

j2π ∫
σ+j∞

σ−j∞
VC (s) estds

Yikes!  Unfortunately, we have entered the realm of contour integration.  
Recall that s is a complex variable, s = σ + jω, and so VC(s) is complex 
function of a complex variable.  To evaluate the integral, we need to 
define a contour or path through the complex plane and evaluate the 
integral along that path.  In this case the particular path would a vertical 
line extending from –j∞ to +j∞, with σ chosen to guarantee that the 
integral converges.  (What does this even mean?)  Unless we learn more 
about complex analysis (Math 365) and the techniques for doing 
complex integration, we are unable to utilize the above transform.
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We have two options.  We could expand our table to have more entries, 
including the one above.  Or we could make the above function look 
more like entries already in the table.  We will try the latter.

If contour integration seems too messy, then what?  Fortunately, there is 
a more practical approach.  We have a small table of transform pairs 
built up by finding the Laplace transforms of a few common time-
domain functions.  We can use the table “backwards”.  Given a 
frequency-domain function, we find its entry in the table.  The 
corresponding time-domain function is the inverse transform. 

The frequency-domain solution to the RC circuit example is

VC (s) =
Vf

s (1 + sRC)
=

Vf

RC
⋅

1

s (s + 1
RC )

Unfortunately, there is nothing in the table that looks like . 

(For reference, the table is reproduced on the next slide.)

1
s (s + a)
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impulse δ(t) 1

step u(t)

ramp t

exponential

sine

cosine

damped sine

damped cosine

f(t) F(s)

1
s
1
s2

1
s + σ

e−σt

ω
s2 + ω2

s
s2 + ω2

(s + σ)
(s + σ)2 + ω2

ω
(s + σ)2 + ω2

sin ωt

cos ωt

e−σt sin ωt

e−σt cos ωt

Some transforms

damped ramp t ⋅ e−σt 1
(s + σ)2
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Partial fractions
The advantage of solving circuits in the frequency domain is that the 
algebra leads to functions that are ratios of polynomials.

F (s) =
N (s)
D (s)

=
ansn + an−1sn−1 + … + a1s + ao

bmsm + bm−1sm−1 + … + b1s + bo

In principle, polynomials can always be re-written as product of 
individual factors.   The number of factors of the polynomial will be 
equal to the highest order of the polynomial.  The process of factoring 
might be messy, the general idea always holds.

F (s) = (s + Zn) (s + Zn−1)…(s + Z1) (s + Zo)
(s + Pm) (s + Pm−1)…(s + P1) (s + Po)

In the above ratio, the various value of Zi are the zeroes of the function 
— if s = –Zi, then F = 0.  The various values of Pi are called the poles of 
the function and are the values where the denominator goes to zero.   
When that happens the function goes to infinity — if s = –Pi, F→∞.



EE 230 Laplace – 6

The key observation is that a ratio of polynomials can always be written 
as a sum of partial fractions:

F (s) =
Am

(s + Pm)
+

Am−1

(s + Pm−1)
+ … +

A1

(s + P1)
+

Ao

(s + Po)
Where the Ai coefficients are yet to be determined. All of the terms are 
very similar, and the form is one that shows up in our little table of 
transforms!  Transforming back to the time-domain, term-by-term

f (t) = Am exp (−Pmt) + Am−1 exp (−Pm−1t) + … + A1 exp (−P1t) + Ao exp (−Pot)
The result is a sum of exponential terms.  The basic form of the time-
domain expression is determined by the poles of the frequency-domain 
function.  The denominator of F(s) determines the time-domain 
behavior.  The numerator polynomial will certainly play a role when 
finding the partial-fraction coefficients, but it plays a minor role in 
determining the essential features of the time-domain function.

F (s) = (s + Zn) (s + Zn−1)…(s + Z1) (s + Zo)
(s + Pm) (s + Pm−1)…(s + P1) (s + Po)
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There are a couple of methods for finding the coefficients.  (If you have 
previously studied Laplace methods in a diff. eq. math class, you have 
probably used one of these techniques.) 

We will illustrate one method that works in most cases. Consider a 
third-order frequency-domain function. Assume that the denominator 
has already been factored. 

 

To repeat, it doesn’t really matter what form the numerator has — the 
essential features of the function are determined by the denominator. 

The partial-fraction expression for the function is 

F (s) =
N (s)

(s + P2) (s + P1) (s + P0)

N (s)

(s + P2) (s + P1) (s + P0)
=

A2

(s + P2)
+

A1

(s + P1)
+

Ao

(s + P0)

Finding the coefficients
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Multiply both sides by (s + P2)·(s + P1)·(s + P0)

N (−P2) = A2 (−P2 + P1) (−P2 + Po)
Solve for the coefficient.

A2 =
N (−P2)

(P1 − P2) (Po − P2)

N (s)

(s + P2) (s + P1) (s + Po)
=

A2

(s + P2)
+

A1

(s + P1)
+

Ao

(s + Po)

N (s) = A2 (s + P1) (s + Po) + A1 (s + P2) (s + Po) + Ao (s + P2) (s + P1)
Evaluate the expression at the value of the P2 pole, s = – P2 or (s + P2 = 0). 
We see that the second and third terms on the right go to zero.
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The other coefficients are found in a similar manner. Go back to:

N (s) = A2 (s + P1) (s + Po) + A1 (s + P2) (s + Po) + Ao (s + P2) (s + P1)

N (−P1) = A1 (−P1 + P2) (−P1 + Po)

Solve for the coefficient: A1 =
N (−P1)

(P2 − P1) (Po − P1)

Evaluate the expression at s = – P1 or (s + P1 = 0). The first and third terms 
on the right go to zero.

Go back to the first expression above and evaluate it at s = – Po,

N (−Po) = Ao (−P0 + P2) (−Po + P1)

Solve for the final coefficient: Ao =
N (−Po)

(P2 − Po) (P1 − Po)
The method is straight-forward. And a bit tedious.
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f (t) = A2e−P2t + A1e−P1t + Aoe−Pot

The partial-fraction version of the frequency domain expression is 

F (s) =
A2

(s + P2)
+

A1

(s + P1)
+

Ao

(s + Po)

The inverse transformation can be done term-by-term to arrive at the 
time-domain result.

We will do a couple of simple numerical examples before trying circuits. 
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First, factor the denominator: F (s) =
10

(s + 5) (s + 2)
Poles at s = –3, 
and s = –7.

Example 1
Find the inverse transform of  

The denominator is second order, so we expect two poles and thus two 
terms in the partial fraction result.

F (s) =
10

s2 + 7s + 10

The partial-fraction expansion is: 
10

(s + 5) (s + 2)
=

A1

s + 5
+

Ao

s + 2
Multiply by (s + 5)·(s + 2)

10 = A1 (s + 2) + Ao (s + 5)
Evaluate at s = –5:  10 = A1(–3) + 0→ A1 = –10/3 = –3.33.

Evaluate at s = –2:  10 = 0 + Ao(3) → Ao = 10/3 = 3.33.

The frequency-domain partial fraction result is: F (s) = −
3.33
s + 5

+
3.33
s + 2

The corresponding time-domain result is: f (t) = − 3.33 ⋅ e−5t + 3.33 ⋅ e−2t
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First, factor the denominator: F (s) =
s + 4

s (s + 3) (s + 7)
Zero at s = –4.
Poles are at s = 0, 
s = –3, and s = –7.

Example 2
Find the inverse transform of  

The denominator is third order, so we expect three poles and then three 
terms in the partial fraction result.

F (s) =
s + 4

s3 + 10s2 + 21s

The partial-fraction expansion is: 
s + 4

s (s + 3) (s + 7)
=

A2

s
+

A1

s + 3
+

Ao

s + 7

Multiply by s·(s + 3)·(s + 7):

s + 4 = A2 (s + 3) (s + 7) + A1s (s + 7) + Aos (s + 3)

Evaluate at s = 0: 4 = A2(3)(7) + 0 + 0→ A2 = 4/21 = 0.190.

Evaluate at s = –3: 1 = 0 + A1(–3)(4) + 0→ A1 = –1/12 = –0.083.

Evaluate at s = –7: –3 = 0 + 0 + Ao(–7)(–4) → Ao = –3/28 = –0.107.
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F (s) =
0.190

s
−

0.083
s + 3

−
0.107
s + 7

f (t) = 0.190 ⋅ u (t) − 0.083 ⋅ e−3t − 0.107 ⋅ e−7t

Then the frequency-domain partial fraction result is:

The corresponding time-domain result is
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Example 3
Now we can apply the method to 
the step input RC circuit. Values 
for components and source 
voltages have been added so that 
we can begin to get a feel for the 
types of numbers involved. 

VC (s) =
Vf /RC

s (s + 1
RC )

=
5 V

0.1 msec

s (s + 1
0.1 msec )

=
50000 V/sec

s (s + 104 sec−1)

R

C
–

+
vC (t)vi (t)

+
–0

Vf

t = 0

1 kΩ

0.1 µF

5 V

As we saw previously, the frequency-domain expression for the 
capacitor voltage is:

RC = 0.1 msec

The partial fraction expansion is:

Vf /RC

s (s + 1
RC )

=
A1

s
+

Ao

(s + 1
RC )

Poles are at s = 0 and 

.s = −
1

RC
= − 104 sec−1
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Vf /RC

s (s + 1
RC )

=
A1

s
+

Ao

(s + 1
RC )

Vf

RC
= A1 (s +

1
RC ) + Aos

Multiply both sides by s·(s + 1/RC):

Evaluate at  : s = −
1

RC
Vf

RC
= 0 + Ao (−

1
RC ) → Ao = − Vf

Evaluate at s = 0 : 
Vf

RC
= A1 ( 1

RC ) + 0 → A1 = Vf

Then: VC (s) =
Vf

s
−

Vf

s + 1
RC

Finally: vC (t) = Vf ⋅ u (t) − Vf ⋅ exp (−
t

RC ) Matches EE 201 
result exactly.
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Example 4
Now let’s try the previously 
worked op amp circuit with step 
input. –

+

C

R2

R1

vo (t)
vi (t)0

Vf

t = 0

As we saw previously, the frequency-domain expression for the output 
voltage is:

10 kΩ

1 nF

0.5 V

R2C = 10 µsec

1 kΩ

Vo (s) = −

Vf

R1C

s (s + 1
R2C )

=
0.1 V

10 μsec

s (s + 1
10 μsec )

=
104 V/sec

s (s + 105 sec−1)

We can already see that this will be virtually identical to the previous 
RC example.  This time, let’s work with number instead of symbols.

104 V/sec
s (s + 105 sec−1)

=
A1

s
+

Ao

(s + 105 sec−1)
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104 V/sec
s (s + 105 sec−1)

=
A1

s
+

Ao

s + 105 sec−1

Following the same steps: 

104 V/sec = A1 (s + 105 sec−1) + Aos

Evaluate at s = –105 sec–1 : 104 V/sec = 0 + Ao (−105 sec−1) → Ao = − 10 V

Then: VC (s) =
10 V

s
−

10 V
s + 105 sec−1

Finally: vC (t) = (10 V) ⋅ u (t) − (10 V) ⋅ exp [−(105 sec−1) t]

Evaluate at s = 0 : 104 V/sec = A1 (105 sec−1) + 0 → A1 = 10 V

= (10 V) ⋅ u (t) − (10 V) ⋅ exp (−
t

10 μsec )
Even though the simple RC and the op amp appear to be very different 
circuits, in the frequency domain, they are essentially identical.
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Repeated roots — special case
We should consider the special case a frequency-domain expression 
having repeated poles. This requires a bit of extra work. We could argue 
the that extra work is not worth it, because we will (almost) never 
encounter repeated poles in a real circuit. Obtaining repeated poles would 
require perfect matching of components, which, given typical component 
tolerances, would probably only happen by accident. 

But we should cover the repeated pole situation. It is interesting from an 
academic point of view, and it provides a dividing line between functions 
have distinct real poles and those having complex poles.  (In EE 201 terms, 
repeated poles corresponds to critical damping in an RLC step response, 
which is the dividing line between over-damped and under-damped 
responses.) 

As an example to illustrate the method for handling repeated roots, 
consider the function .  This is a second-order function and has 

two roots, both of which are at s = –3.  If we try to expand this as 

, the problem in choosing A1 and Ao is immediately apparent.

s
(s + 3)2

A1

s + 3
+

Ao

s + 3
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Instead, the expansion should consist of terms that have various powers of 
the repeated pole. For our example: 

. 

With that starting point, we can proceed as before. However, we will not 
be able to simply plug in values of the poles to find the coefficients. 
Instead we will arrive a set of simultaneous equations relating the 
coefficients. Solving the set can range from trivial to tedious, depending on 
the order of the starting function. 

Subtle point: The units of the coefficients in the in the expansion will be 
different.  For example, if s is frequency (sec–1) in the above expression, 
then the units of the left-hand side is sec.  Then on the right-hand side, A1 
must be dimensionless (like a gain) and Ao will be a frequency (sec–1). In a 
typical math problem, where we are dealing simply with numbers, we 
never worry about the “meaning” of the coefficients, but in a real, physical 
system, like a circuit, we must know what the symbols represent and keep 
track of the corresponding units.  (Also, if the above expression represents 
a real system, we should includes the units with the numbers, “3 sec–1” 
and not just “3”.)

s
(s + 3)2 =

A1

s + 3
+

Ao

(s + 3)2
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. 

Continuing on with the example, we can multiply both sides by (s + 3)2, 

 

   

Matching coefficients of the powers of s on the left and right gives two 
equations 

A1 = 1 and 3A1 + Ao = 0. 

Solving these falls into the trivial class: A1 = 1 and Ao = –3. 

The partial fraction version of the frequency-domain function is 

 

That leaves us with the final question: What is inverse transform of the 
second term.  Answer: it is a “damped ramp”, t·exp(–at) ↔ (s + a)–2. So the 

corresponding time-domain function is: f (t) = exp(–t) – 3t·exp(–3t).

s
(s + 3)2 =

A1

s + 3
+

Ao

(s + 3)2

s = A1 (s + 3) + Ao

= A1s + (3A1 + Ao)

1
s + 3

−
3

(s + 3)2
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Example 5
Find the time-domain function corresponding to the frequency-domain 
function: 

. 

Factoring the quadratic in the denominator: s2 + 2s + 10 = (s+5)·(s+2), we 
see that the function actually has repeated poles. So, rewriting: 

.

The partial fraction expansion will be: 

.

Multiply both sides by (s+5)2(s+2):

3(s + 4)2 = A2 (s + 2) + A1 (s + 5)(s + 2) + Ao (s + 5)2

F(s) =
3 (s + 4)2

(s + 5) (s2 + 7s + 10)

F(s) =
3 (s + 4)2

(s + 5)2 (s + 2)

3 (s + 4)2

(s + 5)2 (s + 2)
=

A2

(s + 5)2 +
A1

s + 5
+

Ao

s + 2
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3(s + 4)2 = A2 (s + 2) + A1 (s + 5)(s + 2) + Ao (s + 5)2

Continue with the tedious algebra — expand everything out: 

3(s2 + 8s + 16) = A2 (s + 2) + A1 (s2 + 7s + 10) + Ao (s2 + 10s + 25)

Gather together similar powers: 

3s2 + 24s + 48 = (A1 + Ao)s2 + (A2 + 7A1 + 10Ao)s + (2A2 + 10A1 + 25Ao)

Match the coefficients for similar powers, resulting in 3 equations in 3 
unknowns, A2, A1, and Ao. 

A1 + Ao = 3 ; A2 + 7A1 + 10Ao = 24 ; 2A2 + 10A1 + 25Ao = 48

Use your favorite method to solve: (Typically, I default to Wolfram Alpha.)  

A2 = –1 ; A1 = 1.67 ; Ao = 1.33

The complete partial-fraction expansion is:  

Going back to the time domain: 

F (s) = −
1

(s + 5)2 +
1.67
s + 5

+
1.33
s + 2

f (t) = − t ⋅ exp (−5t) + 1.67 ⋅ exp (−5t) + 1.33 ⋅ exp (−2t)
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Example 6
We should try a circuit that has repeated poles.  The circuit below 
consists of three sections, an RC voltage divider at the input, an non-
inverting op amp, and an RC section at the output, identical to the 
first. The source voltage has a step change, starting at 0 and stepping 
up to Vf. 

The isolation provided by the ideal input and output resistances of the 
amp allow us to treat the circuit as three independent pieces which are 
then cascaded to give the total response.

R
vi (t)

Vf

t = 0

–
+ R

C
0

v+(t)

vo(t)

R2
C

v1(t)

R1

Vi (s)
–
+

V+(s)
Vo(s)

V1(s)

ZR = R
ZR = R

R2R1
ZC 

1
sC ZC 1

sC

time 
domain

frequency 
domain

Vi (s) =
Vf

s
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V+ (s) =
1

sC

R + 1
sC

vi =
1

RC

s + 1
RC

Vi (s)

Vo (s) =
1

sC

R + 1
sC

V1 (s) =
1

RC

s + 1
RC

V1 (s)

V1 (s) = (1 +
R2

R1 ) V+ (s) = GoV+ (s)

Vo (s) =
Go ( 1

RC )
2

(s + 1
RC )

2 Vi (s)Putting the three pieces together:

Inserting the source: Vo (s) =
Go ⋅ ( 1

RC )
2

⋅ Vf

s (s + 1
RC )

2 =
K

s (s + a)2

where new names a = 1/RC and K = GoVf /(RC)2 = GoVf a2 and are 
introduced to help tidy up the impending math.

Voltage divider at the input:

Gain of the non-inverting: 

Voltage divider at the output:



EE 230 Laplace – 25

Vo (s) =
K

s (s + a)2 =
A2

(s + a)2 +
A1

s + a
+

Ao

s

Do the partial fraction expansion, using the trick for repeated poles:

Multiply by s(s + a)2: K = A2s + A1s (s + a) + Ao (s + a)2

Expand and gather coefficients: K = (A1 + Ao) s2 + (A2 + A1a + 2Aoa) s + Aoa2

This is one closer to a trivial case. Comparing terms:

K = Aoa2 → Ao =
K
a2

= GoVf

A1 + Ao = 0 → A1 = − Ao → A1 = − GoVf

A2 + A1a + 2Aoa = 0 → A2 = − A1a − 2Aoa → A2 = −
GoVf

RC

Vo (s) = −

GoVf

RC

(s + 1
RC )

2 −
GoVf

s + 1
RC

+
GoVf

s

vo (t) = − GoVf
t

RC
exp (−

t
RC ) − GoVf exp (−

t
RC ) + GoVf ⋅ u (t)
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Imaginary and complex roots — sinusoids
Now, we consider that situation when a circuit is being driving by a 
sinusoidal source.  Introducing a sinusoid (sine or cosine) into a 
frequency-domain expression necessarily creates complex poles (and 
maybe complex zeros). This is a continuation of the EE 201 notion that 
sinusoids and complex numbers are inextricably linked together. 

The partial fraction approach with complex poles is essentially the same 
as with real poles.  The difference is in the complex algebra that reaults. 
In addition to the slightly messier complex algebra, one or two extra 
steps may be needed in order to put the frequency-domain and time-
domain expressions into a recognizable form. 

We should remind ourselves of some basic tools needed when 
performing complex algebra. Then next slide lists a few key details for 
complex math. (If your complex number skills are shaky, it would 
probably be a good idea to review basic complex analysis before diving 
too deeply into the subsequent material. The EE 201 notes contain a few 
slides covering basic complex algebra and the proper interpretation of 
complex numbers in circuit analysis.)
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ejθ = cos θ + j sin θ

Mejθ = M cos θ + jM sin θ

cos θ =
1
2 [ejθ + e−jθ]

sin θ =
−j
2 [ejθ − e−jθ]

1
j

= − j

cos ωt ↔
s

s2 + ω2

a = M cos θ

b = M sin θ

M = a2 + b2

θ = arctan ( b
a )

K = a + jb = Mejθ

K = Mejθ → K* = Me−jθ

K = a + jb → K* = a − jb

sin ωt ↔
ω

s2 + ω2
e±jωt ↔

1
s ∓ jω

A cos ωt + B sin ωt = M cos (ωt − θ)

Real/imaginary 

Magnitude/phase

Complex conjugate

Euler

Common identity

Laplace

Useful trig identity

M = A2 + B2 θ = arctan ( B
A )

Complex number math & sinusoids
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Example 7 — inverse transform with imaginary poles

The best way to see how to handle complex numbers is do some 
examples.  Consider the frequency-domain function

F (s) =
−18

(s + 3) (s2 + 9)
(We can imagine how a sinusoidal source would result in the s2 + 9 
factor in the denominator.) 

Factoring the denominator: F (s) =
−18

(s + 3) (s + j3) (s − j3)
Two of the poles are imaginary, P2 = –j3 and P3 = +j3. Note that the 
poles are complex conjugates. This is always the case with frequency-
domain functions that come from real circuits — complex poles always 
come in complex-conjugate pairs.  This is important for ensuing steps. 

Expand the function into partial fractions

−18
(s + 3) (s + j3) (s − j3)

=
A2

s + 3
+

A1

s + j3
+

Ao

s − j3
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Multiply by (s + 3)(s + j3)(s – j3)

−18 = A2 (s + j3) (s − j3) + A1 (s + 3) (s − j3) + Ao (s + 3) (s + j3)
Evaluate at each of the pole values:

At s = –3 : 

−18 = A2 (−3 + j3) (−3 − j3) + 0 + 0 → A2 =
−18

(−3 + j3) (−3 − j3)
=

−18
18

= − 1

At s = –j3 : 

−18 = 0 + A1 (−j3 + 3) (−j6) + 0 → A1 =
−18

−18 − j18
=

1
1 + j1

= 0.707 ⋅ e−j45∘

At s = +j3 : 

−18 = 0 + 0 + Ao (j3 + 3) (j6) → Ao =
−18

−18 + j18
=

1
1 − j1

= 0.707 ⋅ ej45∘

Note that A1 and Ao are complex conjugates.  This also will always be true — 
the coefficients for the complex conjugate poles will be complex conjugates 
as well.  Meaning that if we calculate one, we know the other automatically.

−18
(s + 3) (s + j3) (s − j3)

=
A2

s + 3
+

A1

s + j3
+

Ao

s − j3
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Converting back to the time domain:

F (s) = −
1

s + 3
+

0.5 − j0.5
s + j3

+
0.5 + j0.5

s − j3

f (t) = − exp (−3t) + (0.5 − j0.5) exp (j3t) + (0.5 + j0.5) exp (−j3t)
Lots of complex numbers.  What does it all mean?  Re-arrange a bit:

f (t) = − e−3t + 0.5 [ej3t + e−j3t] − j0.5 [ej3t − e−j3t]
Use Euler’s relations to convert the complex exponentials to sine & cosine:

f (t) = e−3t + cos (3t) − sin (3t)

f (t) = e−3t + 1.414 ⋅ cos (3t + 45∘)
Complex conjugates poles in the frequency domain will always lead 
back to sinusoids in the time domain.  And we should expect real 
coefficients in the final result.

The partial fraction expansion of the function is

Then use the cosθ + sinθ identity to combine the two sinusoids:
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Rather than converting the simple partial fraction form of the frequency-
domain to the time domain and then slashing around with complex 
numbers to simply the time-domain form, we could do the slashing 
around first. After find the coefficient of the PF expansion,

Combine the 2nd and 3rd terms using common denominators.

F (s) = −
1

s + 3
+ (0.5 − j0.5) (s − j3)

(s + j3) (s − j3)
+ (0.5 + j0.5) (s + j3)

(s − j3) (s + j3)

After simplifying the numerator, we are left with

= −
1

s + 3
+

0.5s − j0.5s − j1.5 − 1.5 + 0.5s + j0.5s + j1.5 − 1.5
s2 + 9

F (s) = −
1

s + 3
+

s − 3
s2 + 9

= −
1

s + 3
+

s
s2 + 9

−
3

s2 + 9

F (s) = −
1

s + 3
+

0.5 − j0.5
s + j3

+
0.5 + j0.5

s − j3

Each term is familiar from our small Laplace table.

f (t) = e−3t + cos (3t) − sin (3t) It’s the same.
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Now that we have some feel for what will happen when there are 
complex conjugate poles, we can try yet a third method to do find the 
inverse.  Since we know that in the end, there will be sines and cosines in 
the time-domain functions, we can tilt things in that direction by using a 
partial fraction expansion that starts with sine and cosine terms.

F (s) =
−18

(s + 3) (s2 + 9)
=

B2

s + 3
+

B1s
s2 + 9

+
Bo ⋅ 3
s2 + 9

We recognize the 2nd and 3rd as being cosine and sine.  If the can find 
the correct coefficients, we can avoid some of the complex math. 

Do the usual:

−18 = B2 (s2 + 9) + B1s (s + 3) + 3Bo (s + 3)

= (B2 + B1) s2 + (3B1 + 3Bo) s + (9B2 + 9Bo)
Matching coefficients for the different powers, we arrive at three equations 
in the 3 unknowns: B2 + B1 = 0 ; B1 + Bo = 0 ; B2 + Bo = –2.  This set falls into 
the trivial category: B2 = –1, B1 = 1, Bo = –1, but use a solver if needed.

F (s) = −
1

s + 3
+

s
s2 + 9

−
3

s2 + 9
Boom. Convert back.
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Example 8 — complex poles
Sinusoidal problems may have poles that are complex poles, not just 
imaginary.  Complex poles lead to damped sinusoids. With complex poles, 
the basic approach is the same, but (as is always the case), the complex 
math may be tedious.  Consider the frequency-domain function below:

F (s) =
−10 (s + 4)

s (s2 + 8s + 25)
If we finish factoring the poles, we obtain a complex-conjugate pair.

F (s) =
−10 (s + 4)

s (s + 4 + j3) (s + 4 − j3)
=

−10 (s + 4)
s (s + P) (s + P*)

(We use P = 4 + j3 and P* = 4 – j3 to denote the values and help reduce 
math mess.) Expanding the function in the usual fashion.

−10 (s + 4)
s (s + P) (s + P*)

=
A2

s
+

A1

s + P
+

Ao

s + P*

On the right, we make use of our earlier observation that the 
coefficients will be complex conjugates.
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−10 (s + 4)
s (s + P) (s + P*)

=
A2

s
+

A1

s + P
+

Ao

s + P*

Multiply by the left-side denominator:

−10 (s + 4) = A2 (s + P) (s + P*) + A1s (s + P*) + Aos (s + P)

Evaluate at s = 0:

−10 (4) = A2 (25) → A2 = − 1.6

Evaluate at s = –P = –4 – j3:

−10 (−4 − j3 + 4) = A1 (−4 − j3) (−4 − j3 + 4 − j3)

A1 =
−10 (−j3)

(−4 − j3) (−j6)
=

5
4 + j3

=
5

5ej36.9∘ = 1e−j36.9∘ = 0.8 − j0.6

We could find the final coefficient by evaluating the above expression at 
 s = –P* = –4 + j3. Or, we use a more expedient approach by recalling that 
the coefficients for complex poles must themselves be complex conjugates.

Ao = A*1 = 0.8 + j0.6 = 1ej36.9∘
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F (s) =
−1.6

s
+

0.8 − j0.6
s + (4 + j3)

+
0.8 + j0.6

s + (4 − j3)

Putting it all together:

We can plow ahead, transforming back to time domain directly and 
then manipulating the results there. Or we could try the technique of 
combining the two complex conjugate terms in the frequency domain 
and massaging them into convenient form before transforming.   Let’s 
plow ahead.  We recognize the terms as a step and two exponentials.

f (t) = − 1.6 ⋅ u (t) + (0.8 − j0.6) e−(4 + j3)t + (0.8 + j0.6) e−(4 − j3)t

Re-arrange and gather together related terms.

f (t) = − 1.6 ⋅ u (t) + 0.8 ⋅ e−4t (ej3t + e−j3t) + j0.6 ⋅ e−4t (ej3t − e−j3t)
Use Euler to convert complex exponentials to sinusoids

f (t) = − 1.6 ⋅ u (t) + 1.6 ⋅ e−4t cos (3t) − 1.2 ⋅ e−4t sin (3t)

Finally, if desired, use the trig identity to combine the cosine and sine

f (t) = − 1.6 ⋅ u (t) + 2 ⋅ e−4t cos (3t + 36.9∘)
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Example 9 — simple RC with sinusoidal source

This is the basic RC circuit that we have 
seen before. (In Example 3 above, we 
found the step response.) Previously, we 
calculated the frequency-domain 
function for the capacitor voltage. 
(“Example 2 in “Laplace Circuits” notes.)  
As seen previously, the two impedance 
from a simple voltage divider.

vi (t) = VA ⋅ cos (ωt)

R

C
–

+
vC (t)vi (t)

+
–

1 kΩ

1 µF

VA = 5 V ω = 1000 rad/s

The Laplace expression for the source is Vi (s) =
VA ⋅ s

s2 + ω2

VC (s) =
1

RC

s + 1
RC

( VA ⋅ s
s2 + ω2 ) =

VA

RC ⋅ s

(s + 1
RC ) (s2 + ω2)

This is identical to Example 7. The partial-fraction expansion is
VA

RC ⋅ s

(s + 1
RC ) (s2 + ω2)

=
A2

s + 1
RC

+
A1

s + jω
+

A2

s − jω
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VA

RC ⋅ s

(s + 1
RC ) (s2 + ω2)

=
A2

s + 1
RC

+
A1

s + jω
+

Ao

s − jω

Do the usual math:
VA

RC
⋅ s = A2 (s2 + ω2) + A1 (s +

1
RC ) (s − jω) + Ao (s +

1
RC ) (s + jω)

Since all poles are distinct, we can find the coefficients one by one.

−
VA

(RC)2 = A2 [( 1
RC )

2

+ ω2] + 0 + 0 → A2 = −
VA

1 + (ωRC)2 = − 2.5 V

Evaluate at s = –jω:

VA

RC (−jω) = A1 (−jω +
1

RC ) (−j2ω) → A1 =
VA (1 + jωRC)
2 [1 + (ωRC)2]

= 1.25 V (1 + j1)
Evaluate at s = +jω:

Evaluate at s = –1/RC:

VA

RC (jω) = Ao (jω +
1

RC ) (j2ω) → Ao =
VA (1 − jωRC)
2 [1 + (ωRC)2]

= 1.25 V (1 − j1)
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VC (s) =
VA

1 + (ωRC)2
−1

s + 1
RC

+
0.5 (1 + jωRC)

s + jω
+

0.5 (1 − jωRC)
s − jω

In looking at the form of the coefficients, we note once again that Ao = A1*. 
Also we can combine some details to write the frequency-domain expression 
as

All the terms represent exponentials, so conversion to time is easy.

vC (t) =
VA

1 + (ωRC)2 [−e− t
RC + 0.5 (1 + jωRC) e−jωt + 0.5 (1 − jωRC) e+jωt]

As we have done previously, re-group similar terms.

vC (t) =
VA

1 + (ωRC)2 [−e− t
RC + 0.5 (e+jωt + e−jωt) − j0.5 (ωRC) (e+jωt − e−jωt)]

Using Euler: 

vC (t) =
VA

1 + (ωRC)2 [−e− t
RC + cos ωt + (ωRC) sin ωt]

Using the trig identity to combine the cosine and sine

vC (t) = V1 ⋅ e− t
RC + V2 ⋅ cos (ωt − θ)

V1 =
−VA

1 + (ωRC)2 = − 2.5 V V2 =
VA

1 + (ωRC)2
= 3.54 V θ = arctan (ωRC) = 45∘
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Example 10 — op amp with sinusoidal source
This is the same op amp with RC 
feedback that we have seen before. (In 
Example 4 above, in which found the 
step response, and in Example r in 
“Laplace Circuits” notes where we found 
the frequency domain expression for the 
output voltage.) 

This time, let’s go a with sine function for 
the source, to see how it works in the 
analysis.

–
+

C

R2
R1

vo (t)
vi (t)

–
+

ZR1

ZR2C

Vi (s) Vo (s)
vi (t) = VA ⋅ sin (ωt) → Vi (s) =

VA ⋅ ω
s2 + ω2

Vo (s) = (−
ZR2C

ZR1 ) Vi (s) = (−

R2

R1

1 + sR2C )( VA ⋅ ω
s2 + ω2 ) =

−
VAω
R1C

(s + 1
R2C ) (s2 + ω2)

ZR2C =
R2

1 + sR2C

1 kΩ

0.1 µF

VA = 0.5 V ω = 1000 rad/s

10 kΩ
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For fun and variety, let’s use the partial-fraction approach where we try 
to cast the function directly into terms that look like sines and cosines, 
(since we know that sines and cosines will be showing up).

Vo (s) =
−

VAω
R1C

(s + 1
R2C ) (s2 + ω2)

=
A2

s + 1
R2C

+
A1s

s2 + ω2
+

Aoω
s2 + ω2

The approach is familiar — we will leave out the comments.

−
VAω
R1C

= A2 (s2 + ω2) + A1s (s +
1

R2C ) + Aoω (s +
1

R2C )

−
VAω
R1C

= A2ω2 +
Aoω
R2C

A2 + A1 = 0
A1

R2C
+ Aoω = 0

A2 =
−( R2

R1
VA) (ωR2C)

1 + (ωR2C)2 A1 =
( R2

R1
VA) (ωR2C)

1 + (ωR2C)2
Ao =

−( R2

R1
VA)

1 + (ωR2C)2

= (A2 + A1) s2 + ( A1

R2C
+ Aoω) s + (A2ω2 +

Aoω
R2C )
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Vo (s) =

R2

R1
VA

1 + (ωR2C)2 −
ωR2C

s + 1
RC

+ (ωR2C) s
s2 + ω2

−
ω

s2 + ω2

Converting back to time.

vo (t) =

R2

R1
VA

1 + (ωR2C)2 [−(ωR2C) e− t
R2C + (ωR2C) cos ωt − sin ωt]

vC (t) = V1 ⋅ e− t
R2C + V2 ⋅ cos (ωt − θ)

V1 = −

R2

R1
VA (ωR2C)

1 + (ωR2C)2 = 2.5 V

V2 =

R2

R1
VA

1 + (ωR2C)2
= 3.54 V

θ = arctan ( −1
ωR2C ) = − 135∘

Using the trig identity to combine the cosine and sine

Even though the source was a sine 
function, the trig identity provides 
the cosine, so we use that. Also, 
the angle correct is tricky — we 
must be careful to get into the 
correct quadrant.  (With the sine 
negative and the cosine positive, 
the angle is in the third quadrant.)

R2/R1 = 10

ωR2C = 1


