First-order filters

The general form for the transfer function of a first order filter is:

However, we will typically recast this into a standard form:

s+27,
Steleri )

T's)=aG,:

There will always be a single pole at s =—P,. The pole must be real
(there is only one, so no complex conjugates are not possible) and it
must be negative (for stability). There will always be a zero, which can
be at s =0, as s = *oo (zero at infinity), or somewhere else, s = —Z,.
(Note the zero can have a positive value.) There may be a gain factor,
G,, which might be 1 or smaller (for a passive circuit with a voltage
divider) or have a magnitude greater than 1 for an active circuit.

The two most important cases are the zero at infinity, which is a low-
pass filter and the zero at zero, which is the high-pass filter.
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Low-pass

In the case were a; = 0, we have a low-pass function. i s-plane

T(S)zbs—lo—b 7Zero as s —> £+

1
0 S e
In standard form, we write it as: pole at —P,
PO
T(s)=G, -
S+-P

The reason for this form will become clear as we proceed. We will
ignore the gain initially and focus on sinusoidal behavior by letting s = jw.

PO PO
\RE 5 4 B g P,+jw
S=jw

Re-expressing the complex value in magnitude and phase form:

r P W
- = - eXp (jHLP) 0; p = — arctan | —
P0+]0) _\/P02+602_ PO
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By looking at the magnitude expression we can see the low-pass behavior.

PO
For low frequencies (w << P,): ~ ==
\/ Pliwd 1P
PO PO

22

At high frequencies (w >> P,):

\/P2+a)2 Ve B

At low frequencies, the magnitude is 1 (the output is equal to the input)
and at high frequencies, the magnitude goes down inversely with
frequency, consistent with the notion of a low-pass response.

We can also examine the phase at the extremes.

®
For low frequencies (w =0): 6, = — arctan £ ~ 0.

o

At high frequencies (w = +x): 0,p = —arctan| — | ~ — 90".
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We can use the functions to make the magnitude 7 = F
and phase as frequency response plots. \/poz £
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Cut-off frequency
Use the standard definition for cut-off frequency, which is the frequency

at which the magnitude is down by \/5 from the value in the pass-band.
For our low-pass function, the pass band is at low frequencies, and the
magnitude there is 1. (Again, we are “hiding” G, by assuming that it is
unity. If G, # 1, then everything is scaled by G,.)

1 P
M=— =

V2o Pt

With a bit of algebra, we find that @, = P,_. The cut-off frequency is
defined by the pole. Tricky! Thus, in all of our equations, we could
substitute w. for P,.

We can also calculate the phase at the cut-off frequency.

a)C o
0; p = — arctan P_o = D

The cut-off frequency points are indicated in the plots on the previous

slide.
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To emphasize the importance of the corner frequency in the low-pass
function, we can express all the previous results using w. in place of P,.
On the left are the functions in "standard" form. On the right, the

functions are expressed in a slightly different form that is sometimes
easier to use.

% Go
TLP(S):GO.S—I-CUC TLP() 1+_
W - Go

T1p (jw) Trp (jw) =

i Je e i 1+]'(w%)

. G,
I
Vi ()

O p = — arctan <a)ﬂ> O;p = — arctan (%)

Again, we could just as easily use real frequency rather than angular

frequency. As an exercise: re-express all of the above formulas using f

instead of w.
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Low-pass filter circuits: simple RC Z.=R

Resistor and capacitor in series —
output taken across the capacitor. V(s)("‘) Zec

Use a voltage divider to find the transfer
function.

L

-— Vi(s
Lot Zip )

V, (s)

V, (s) Zc -

Vi(s) e %+R_5+Ric RRETas e

15 =

1
Clearly, this is low-pass with G, =1 and W, = R

The only real design consideration is choosing the RC product, which
then sets the corner frequency.
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Low-pass filter circuits: simple RL

Inductor and resistor in series — it
output taken across the resistor. Vi(5)<+> Z—=VAs)
— R S
Use a voltage divider to find the transfer
function.
ZR
V == Vi
0 (S) ZR e ZL (S)
. e ol R CRSERESRE
T Vils)  Zp+ 7y Ri4sL | s+ R sta,
. : . ; R
Again, low-pass behavior with G, = 1, but now with @, = T

As with the previous example choosing the “RL time constant” , we can
define the pass-band of this low-pass filter.
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Low-pass filter circuits: inverting op amp

IS 1 R
|| ZZ B RZ = i -
7 R, 56 TSR
— NN\ —9
Rl
V(s) =AW\ —- — vl
¢ r 0
R R 1
T(S) = Yo (S) — _é EEE 1+S12{2C RE _R_i a2 <_&> R,C
Velsh = 1 Z; Ry e Ri/ s+ gl
. : > 1
Clearly, this is also low-pass with G, = —— and @, = P
1 2

Be careful with the extra negative sign in the gain: -1 = exp(j180° )

At low frequencies: | T| = R»/R;, and 61 = 180° (= — 180°)

At high frequencies: | T| = (wR:C)-1, and O = +90° (= - 270°)
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Magnitude and phase plots for an active low-pass filter with R; = 1 kQ), R
=25 kQ, and C = 6.4 nF, giving f, = 1000 Hz and G, = -25 (| G, | = 28 dB).
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Low-pass filter circuits: non-inverting op amp

Note: It might slightly
disingenuous to treat this as if
it were some new type of
filter — we can readily see
that it is a simple RC filter
cascaded with a simple non-
Inverting amp. However, It Is
still a useful circuit.

Zc RC
V — s :
+(8) Beils i g simple RC
Ro ety
Vo(s) = <1 =+ R_> Vi (s) non-inverting amp
1
V4 R Rig
T {5 = O(S):(1+_2>( Rcl)
Vi(s) Ri) \s+ z=
: R> et
Low-pass with G, = (1 + R_1> and w, = RC
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Low-pass filter circuits: another RC

Go

W

EE 230

Lr=K,
v, (s) - 75 AVAVAY .
Vsl Zp 7R i
r vi(l) |G e B
14+sR,C ShaE i == RZ 28
R . o
1+51222C + Ky SC-
i Ry Lpi— ZRzHZC
Ro + Ry + sRiR,C
P R
RpC — 1
== Rp:RlHRz R2‘|‘—
5 G
(R1 —|—R2)S—|—RP—C s R;
W, e 1 -+ SRQC
Eafrast _
ZEfEsyEE Low-pass.
Nl e olhee diider Tkt o
R R Oote the voltage divider. amn” < 1.
R The corner depends on the parallel combination.
P
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High-pass

EE 230

In the case were ap = 0, we have a high-pass function. jf‘)

s-plane
as
T(s) =
bis + b, zero at ()
s - 0]
In standard form, we write it as: pole at -P,
T (s)y=G6G. -
(5) S 9L P

o

We will ignore the gain initially (set G, = 1) and focus on sinusoidal
behavior by letting s = jw.

S SEREREy (/).
(EE B _P0+ja)

S=jw

Re-expressing the complex value in magnitude and phase form:
e i

0,
e _\/P02+a)2_

P

0

. o a)
exp (]HHP) Onp = 90° — arctan | —
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By looking at the magnitude expression, we can see the high-pass behavior.

: 0, 0 0,
For low frequencies (w << P,): ~ =
;) 7 Ea=u Ay i
P+ w P :
0, 0,
At high frequencies (w >> P,): ~ =

\/Pg +w? Vo’
At low frequencies, the magnitude is increasing with frequency, and at high

frequencies, the magnitude is 1 (the output is equal to the input). This
behavior is consistent with a high-pass response.

We can also examine the phase at the extremes.

For low frequencies (w << P,): Oyp = 90° — arctan (ﬂ> ~ 90°.

At high frequencies (w >> P,): Oyp = 90° — arctan (ﬂ) ~ (.
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),

We can use the functions to make the magnitude M =

and phase as frequency response plots. PoH wf
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Cut-off frequency

Use the standard definition for cut-off frequency, which is the frequency

at which the magnitude is down by \/5 from the value in the pass-band.
For our high-pass function, the pass band is at high frequencies, and the
magnitude there is 1. (Again, we are “hiding” G, by assuming that it is
unity. If G, # 1, then everything is scaled by G,.)

1 0
M= —

V2 Pt

With a bit of algebra, we find that . = P,_. The same result as for low-
pass response, except that pass-band is above the cut-off frequency in
this case. Once again, we see the importance of the poles in
determining the behavior of the transfer functions.

We can calculate the phase at the cut-off frequency.

W
0,p = 90° — arctan (P—C) —45

The cut-off frequency points are indicated in the plots on the previous

slide.
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To emphasize the importance of the corner frequency in the high-pass
function, we can express all the previous results using w. in place of P,.

G peeiimnan Saeid The corner frequency is the
V2 > | p2 T opeme e pole
\/wc T PO :

S Go
THP(S)_GO.S—I—C()C THP(S):l—I—?C
, jw : G,
Tup (jw) = G, - - e o —
+ W¢ We
jo+ w Jieas (j )
40 Go
e === psaneslia:
Tir () Vo + 02 b it

Oyp = arctan (%) — arctan (%) ‘THP (jw) ‘ o G,
C 5
= 90° — arctan (2>
W, .
Oyp = + arctan (E)

Exercise: Re-express all of the above formulas using f instead of w.
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High-pass filter circuits: simple RC

1
G ——
Capacitor and resistor in series — || sC
output taken across the resistor. 1 +
ve () 2,3 V()
Use a voltage divider to find the transfer = e
function.
LR
Vsl Vi
0 (S) ZC _E ZR ! (S)
V Z R
T(S): O(S): : i T Sl o 2
Vi(S) ZR"‘ZC R—|—E S—|—R—C S+ W
RERndan . 1
Clearly, this is high-pass with G, =1 and w, = RC
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High-pass filter circuits: simple RL

Z —R
+
ve(*) Z,3 V(s)
=gl
/1
VO SH= Vl S
( ) ZL a= ZR ( )
VO (S) ZL sL. S S
ATV iR LA : e
Vel ZitZr SLRT s X s+ o
! , : | R
Again, high-pass with G, = 1 but with w, = =
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High-pass filter circuits: inverting op amp

We see that this is also high-pass with G, = —% and @ = e

The same comments about the phase apply here: the —1 in the gain
factor introduces an extra 180° (or —180°) of phase.
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High-pass filter circuits: non-inverting op amp

C
Viis)o H Again, this is simple RC high-
R pass cascaded with a non-
Inverting amp.
ZR S : :
Vi(s) = s e 1 simple RC high pass
R
Vo (s) = (1 + R—j) V{5 non-inverting amp

R 1
High-pass with G, = (1 iis R—2> and w, = —
1
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High-pass filter circuits: another RC 1

Z-=R L= =
T(s) — V, (5) & Zro —Rl’\/\/\/l I sC
7 (5) Zro+2Zr1+Zc ” +
V(s) ("‘) Ly 2 V (s)
= e T =R -
Ro + Ry + &
e ( R2 > S
- I ,
Ri+ Rz /) s+ (R TR,)C
i Ol High-pass.
Go= =2 Note the voltage divider. “Gain” < 1
LRI ote the voltage divider. “Gain” < 1.
We = : Th d d h | binati
R IR e corner depends on the series combination.
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Case study: inductors can be trouble

Cheap inductors can have a relatively large series resistance. This
parasitic resistance can cause trouble in certain circumstances.

R ideal

+ S S

Vi(S)CtD AT s+ & S

As usual, zero ats =0,
pole at s = —w..

ENERE sL + R, i S—|—% S+ (7
sEHE R ER; S,LRNLLRl s + wp

Pole and zero
are both shifted!
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EE 230

@ @
Or = arctan <—> — arctan <—>
Wy ap

Effect of inductor parasitic resistance on high-pass filter:
L =0.027 H, R; =1 kQ, and Rs = 60 Q.
The frequency responses for both magnitude and phase are quite different.
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