For the circuit shown below, calculate the transfer function. Express your answer in symbols (R, C, etc) rather than numbers. Assume that the op-amp is ideal. From the transfer function, calculate the values for the pole frequencies (P_1 and P_2), ω_o , and Q_P . (These should be numbers, not symbols.) Then calculate the 3-dB frequency (or frequencies). $T(s) = \underline{\hspace{1cm}}$ $P_1 =$ ______. $P_2 =$ ______. $\omega_o =$ _____. $Q_P =$ _____. $f_c =$ ______. (Hz, not rad/s)